Impacts of Withdrawals on Streamflow Misconceptions vs. Science

Nigel Pickering, Ph.D., P.E.
Irrigation Engineer/Watershed Hydrologist
Charles River Watershed Association
www.charlesriver.org

Urban Impacts on Streamflow

- Natural flow is a function of:
 - precipitation, ET, slope, soils, vegetation
- Actual flow is impacted by:
 - increased annual withdrawals from population
 - increased summer withdrawals from irrigation
 - increased runoff/less recharge from impervious and compacted areas
 - export of wastewater water via sewer systems

Water Withdrawals for Select Towns in the Charles

Flow Response to Growth - Neponset R at Norwood

Streamflow Impacts

- Misconception
 - water withdrawals are not the major problem
 - wastewater export and impervious surfaces are the bigger problems

Summertime Withdrawals by Subbasin in Charles R

Subbasin Water Balances, Assabet Basin:

Withdrawals as a percentage of total subbasin outflows

Streamflow Impacts

- wastewater export and impervious surfaces do lower streamflow but they are a diffuse impact
- water withdrawals are a localized or point impact and are cumulative
- impact is patchy—magnitude depends on source and its location

Supply vs. Demand

- Misconceptions
 - water supply is sufficient because
 withdrawals only take a small fraction of annual precipitation
 - there must be plenty of water because wells never run dry

Supply vs. Demand

Ample Groundwater with a Dry River

Ipswich River is a Prime Example

Supply vs. Demand

- water supply for rivers is threatened in the summer because withdrawals can exceed recharge especially in a dry year
- streams are at the top of the aquifer so they can go dry even though groundwater is still available for supply

Withdrawals

- Misconceptions
 - wells far from the river have no effect
 - wells in a confined aquifer have no effect
 - effect of withdrawals on rivers is minor
 - surface water reservoirs have no impact at all

September Baseflow – Upper Charles R

September Baseflow – Mine Brook

Flow Alteration in the Upper Delaware

• Typical NYC diversion of over 50% at the 3 reservoirs: 250 bgal annual avg

Median Monthly Flow at Neversink, NY Gage (RVA Targets within Error Bars)

Withdrawals

- all well withdrawals affect the river, just timing of the impact is shifted
- impact larger for headwaters & tributaries
- impact larger in the summer for streamside wells
- cumulative impact from multiple withdrawals can be large
- reservoir impact can be 100% in the summer

Irrigation

- Misconception
 - lawns need to be watered frequently to be maintained
 - lawn irrigation returns most of the water to the groundwater

Irrigation of Residential Grass

Recommended Depth = 1.0 in/wk

Min Available Water (grass on sand) = 1"

Max Irrig Freq = 1.0 in/1.0 in/wk= 1 week

Irrigation

- lawns in the NE only need about 1.0" of water every week (or more) during the summer (includes rainfall)
- about 75% of irrigation water is lost to the atmosphere via evapotranspiration

Mitigation of Impacts on Streamflow

- Conservation
 - less demand
- Restoration
 - more recharge
- Optimization
 - improved management

Conservation

- Misconceptions
 - per capita water use in MA is already low
 - conservation would yield only 10% savings
 - conservation is a costly alternative

Conservation vs. Recharge

- rivers respond to total use not per capita use
- outdoor conservation could save 30-40% in in summer with little cost
- cost comparisons:
 - conservation < 0.4 c/gal (double current)
 - stormwater recharge ~ 1.5-13.5 c/gal¹
 - wastewater recharge ~ 3.0-8.0 c/gal²

² Bellingham CWRMP—\$10 mil extra to recharge 0.4 mgd [assumed 20 year life @ 5%].

¹ "Preliminary Data Summary of Urban Storm Water Best Management Practices", Chap. 6, EPA, 1999 [assumed 10 year life @ 5%].

Impacts of Withdrawals on Streamflow Misconceptions vs. Science

Nigel Pickering, Ph.D., P.E.
Irrigation Engineer/Watershed Hydrologist
Charles River Watershed Association
www.charlesriver.org

